Стохастическая аппроксимация - définition. Qu'est-ce que Стохастическая аппроксимация
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Стохастическая аппроксимация - définition


Стохастическая аппроксимация         
(от греч. stochastikos - умеющий угадывать, проницательный и лат. approximo - приближаюсь)

метод решения широкого класса задач статистического оценивания (См. Статистическое оценивание), при котором каждое следующее значение оценки получается в виде основанной лишь на новом наблюдении поправки к уже построенной оценке. Основными чертами, обусловившими популярность С. а. в теоретических и прикладных работах, явились её непараметричность (применимость при весьма скудной информации об объекте наблюдения) и рекуррентность (простота пересчёта оценки при поступлении нового результата наблюдений). С. а. Применяется во многих прикладных задачах теории управления, обучения, в задачах техники, биологии, медицины. С. а. описана в 1951 американскими статистиками Г. Роббинсом и С. Монро, которые предложили рекуррентный план отыскания корня уравнения регрессии (См. Регрессия), т. е. корня θ уравнения r (x) = α в ситуации, когда каждое измеренное значение ук функции R (x) в точке Xk содержит случайную ошибку. Процедура Роббинса - Монро даётся формулой xK+i = Xkк (ук - α). При некоторых условиях на функцию R (x), последовательность ak, стремящуюся к нулю, и на характер случайных ошибок доказано, что Xk →∞ при увеличении к. Позже метод С. а. был применен и для решения др. задач: отыскания максимума функции регрессии, оценки неизвестных параметров распределения по наблюдениям и др. На основе изучения предельного распределения нормированной разности xk - θ построены асимптотически наилучшие процедуры С. а., в которых последовательность ак нужно выбирать зависящей от наблюдений.

Лит.: Вазан М., Стохастическая аппроксимация. пер. с англ., М., 1972; Невельсон М. Б., Хасьминский Р. З., Стохастическая аппроксимация и рекуррентное оценивание, М., 1972.

Р. З. Хасьминский.

Стохастическая аппроксимация         
Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов.
Теория приближений         
Теория приближений — раздел математики, изучающий вопрос о возможности приближённого представления одних математических объектов другими, как правило более простой природы, а также вопросы об оценках вносимой при этом погрешности. Значительная часть теории приближения относится к приближению одних функций другими, однако есть и результаты, относящиеся к абстрактным векторным или топологическим пространствам.

Wikipédia

Стохастическая аппроксимация

Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации. Основоположниками метода стохастической аппроксимации являются Кифер, Вольфовиц, Робинс, Монро .

Qu'est-ce que Стохаст<font color="red">и</font>ческая аппроксим<font color="red">а</font>ция - défin